Development of a surrogate model
for microkinetic modeling of the COx methanation reaction
and fine-tuning using transfer learning
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Introduction

Optimization of catalytic reactors requires a suitable description of the reaction rate.
Simple power-law expressions offer the simplest representation of heterogeneously
catalyzed systems. However, power-law expressions allow only for a limited
fundamental description of the catalyst surface processes, which restricts their range
of validity. In contrast, microkinetic elementary step models, such as the one
developed by Schmider et al. [1] for COx methanation, represent the system as a
detailed network of surface interactions. The accuracy achieved with these models
comes at the expense of high computational load. A traditional technique for the
reduction of a microkinetic mechanism is the use of Langmuir-Hinshelwood-Hougen-
Watson kinetics, which focus on the elementary steps that most significantly affect
global kinetics. In recent years, deep learning has gained attention as an alternative to
these traditional kinetic modeling methods. Deep learning models can serve as
surrogates to simulate the behavior of a microkinetic system, increasing the speed of
calculations [2].

While studies of heterogeneous catalysis and the models developed often align with
experimental data, their accuracy tends to deteriorate outside the conditions under
which they were obtained. As a potential solution to this issue, transfer learning (TL) is
explored in this work. This methodology, which involves adapting pre-trained deep
networks to smaller training data sets, has the potential to significantly reduce the

modeling and experimental effort required to fit new models to specific systems.

Methods

Based on the Global Reaction Neural Network (GRNN) architecture by Kircher et al. [2]
a surrogate model for the microkinetic elementary step model by Schmider et al. [1] is
developed. The resulting model is adapted to the experimental data of Langer et al. [3],
who used a catalyst different than that considered during the development of the

microkinetic model.



Results

We were able to successfully approximate the steady-state reaction rates of the
microkinetic model using a neural network (NN). As can be seen in Figure 1, after
adjusting the active specific surface area (SSA) to the experimental data from
Langer et al. [3], the NN without TL already approximates the experimental data well,
but an adaptation is desirable. To show that only a part of the experimental data is
needed during TL, we use experimental data up to a temperature of 350 °C or 400 °C.
It can be seen that the model is in very good agreement with the experimental data

used for training and also extrapolates very well.
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Figure 1: Steady-state trajectories of yi (i € {COz Hz, CH4}) over the temperature at 10 bar,
8 mlstp min~! mgLcat with a feed containing H2:CO2:N2 in a ratio of 4.4:1:5.6 in a CSTR. Markers indicate
experimental data from Langer et al. [3]. The solid line represents the prediction using the surrogate
model without transfer learning and the dashed and dotted lines represent the prediction by the adapted
surrogate models with training data up to Twain = 350 °C and Twain = 400 °C, respectively.
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